
International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 A Survey on Software Reliability Assessment by
Using Different Machine Learning Techniques

 Bonthu Kotaiah , Dr. R.A. Khan

ABSTRACT: Software reliability is a special aspect of reliability engineering. System reliability, by definition, includes all parts of the system,

including hardware, software, supporting infrastructure (including critical external interfaces), operators and procedures. Software reliability is
a key part in software quality. The study of software reliability can be categorized into three parts: modeling, measurement and improvement.
Software reliability modeling has matured to the point that meaningful results can be obtained by applying suitable models to the problem.

There are many models exist, but no single model can capture a necessary amount of the software characteristics. Assumptions and
abstractions must be made to simplify the problem. There is no single model that is universal to all the situations. Software reliability
measurement is naive. In this paper, we propose various machine learning approaches or techniques for the assessment of software reliability

such as fuzzy approach, neuro-fuzzy approach, artificial neural network approach, genetic algorithm approach, Bayesian classification
approach, support vector machine (SVM) approach, Self-organizing map approach. Also, In this paper we investigate the performance of
some of the well known machine learning techniques in predicting software reliability.

 Keywords: Software Reliability, Machine Learning Techniques, Assessment, Prediction, Investigation.

—————————— ——————————

1. INTRODUCTION ON SOFTWARE
RELIABILITY

1.1. WHAT IS SOFTWARE RELIABILITY

Software reliability is often defined as ―the

probability of failure-free operation of a computer program
for a specified time in a specified environment.‖ Software
Reliability is also an important factor affecting system
reliability. Various approaches can be used to improve the
reliability of software, however, it is hard to balance
development time and budget with software reliability.

Software Reliability is an important to attribute of
software quality, together with functionality, usability,
performance, serviceability, capability, installability,
maintainability, and documentation. Software Reliability is
hard to achieve, because the complexity of software tends
to be high. While any system with a high degree of
complexity, including software, will be hard to reach a
certain level of reliability, system developers tend to push
complexity into the software layer, with the rapid growth
of system size and ease of doing so by upgrading the
software.

1.2.HOW TO ASSESS SOFTWARE
RELIABILITY

The root causes of poor reliability are found in a
combination of non- compliance with good architectural
and coding practices. This non-compliance can be detected
by measuring the static quality attributes of an application.
Assessing the static attributes underlying an application’s
reliability provides an estimate of the level of business risk
and the likelihood of potential application failures and
defects the application will experience when placed in
operation. Assessing reliability requires checks of at least
the following software engineering best practices and
technical attributes:

 Application Architecture Practices

 Coding Practices

 Complexity of algorithms

 Complexity of programming practices

 Compliance with Object-Oriented and Structured
Programming best practices (when applicable)

 Component or pattern re-use ratio

 Dirty programming

 Error & Exception handling (for all layers - GUI,
Logic & Data)

 Multi-layer design compliance

Depending on the application architecture and the

third-party components used (such as external libraries or
frameworks), custom checks should be defined along the
lines drawn by the above list of best practices to ensure a
better assessment of the reliability of the delivered

————————————————

 Bonthu Kotaiah is currently pursuing Ph.D degree program in
Information Technology, Babasaheb Bhmirao Ambedkar University,
Lucknow, India, PH-09666995969, 08423085961. E-mail:
kotaiah_bonthuklce@yahoo.com

 Dr.R.A. Khan is currently working as an Associate Professor in
Department of Information Technology, Babasaheb Bhimrao Ambedkar
University,India . E-mail:khanraees@yahoo.com

http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

software. When high levels of reliability need to be assured,
it will be necessary to use several sources of evidence to
support reliability claims. Combining such disparate
evidence to aid decision making is itself a difficult task and
a topic of current research. Four areas of evidence are
important in terms of benefits and limitations:

1. evidence from software components and structure;
2. evidence from static analysis of the software

product;
3. evidence from testing of software under

operational conditions; and
4. evidence of process quality.

Machine learning algorithms have been proven to be

practical for poorly understood problem domains that have
changing conditions with respect to many values and
regularities. Since software problems can be formulated as
learning processes and classified according to the
characteristics of defect, regular machine learning
algorithms are applicable to prepare a probability
distribution and analyze errors (Fenton and Neil, 1999;
Zhang, 2000). Decision trees, artificial neural networks,
Bayesian belief network and clustering techniques such as
k-nearest neighborhood are examples of most commonly
used techniques for software defect prediction problems
(Mitchell, 1997; Zhang, 2000; Jensen, 1996).

1.2. CLASSES OF SOFTWARE
RELIABILITY ASSESSMENT

Three major classes of software reliability
assessment are presented.

1. Black box reliability analysis (P. 111): Estimation of the
software reliability based on failure observations from
testing or operation.
2. Software metric based reliability analysis (P. 115):
Reliability evaluation based on the static analysis of the
software (e.g., lines of code, number of statements,
complexity) or its development process and conditions
(e.g., developer experience, applied testing methods).
3. Architecture-based reliability analysis (P. 119):
Evaluation of the software system reliability from software
component reliabilities and the system architecture (the
way the system is composed out of the components).

2. APPROACHES TO SOFTWARE
RELIABILITY

2.1. FUZZY APPROACH.

Software industry suffer many challenges in

developing a high quality reliable software. Many factors
affect their development such as the schedule, limited
resources, uncertainty in the developing environment and

inaccurate requirement specification. Software Reliability
Growth Models (SRGM) were significantly used to help
in solving these problems by accurately predicting the
number of faults in the software during both
development and testing processes. The issue of building
growth models was the subject of many research work. In
this approach, we explore the use of fuzzy logic to build a
SRGM. The proposed fuzzy model consists of a
collection of linear sub-models joined together smoothly
using fuzzy membership functions to represent the fuzzy
model. Results and analysis based data set developed by
John Musa of Bell Telephone Laboratories are provided to
show the potential advantages of using fuzzy logic in
solving this problem.

2.1.1. THE SOFTWA RE
RELIABILITY DATA

John Musa of Bell Telephone Laboratories compiled
a software reliability database . His objective was to collect
fault interval data to assist software managers in
monitoring test status, predicting schedules and to assist
software researchers in validating software reliability
models. These models are applied in the discipline of
software reliability engineering. In our case, we used data
from three different projects. They are Real Time Control,
Military and Operating System. A MATLAB toolbox for
modeling of fuzzy systems [36] was used to implement
the following results. The routines of the toolbox
contain the Gustanfson-Kessel (GK) clustering algorithm.

2.1.2. VALIDATION CRITERIA

In order to check the performance of the developed model,
we compute the Variance-Accounted-For (VAF)
performance criterion to measure how close the
measured values to the values developed using the fuzzy
models. The VAF is computed as:

VAF =[1 - var(y - ˆy)

________ X 100 % (1)
 var(y)

where y, ŷ are the real actual output and the fuzzy
model estimated output, respectively.

2.2. ARTIFICIAL NEURAL NETWORKS
APPROACH

In this approach, we propose an artificial neural-
network-based approach for software reliability
estimation and modeling. We first explain the network
networks from the mathematical viewpoints of software
reliability modeling. That is, we will show how to apply
neural network to predict software reliability by designing
different elements of neural networks. Furthermore, we will

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

use the neural network approach to build a dynamic
weighted combinational model. From experimental results,
we can see that the proposed model significantly
outperforms the traditional software reliability models.

2.2.1. A NEURAL-NETWORK-BASED
APPROACH FOR SOFTWARE
RELIABILITY MODELING

As we mentioned in the previous section, the
objective function of the neural network can be
considered as compound functions. In other words, if we
can derive a form of compound functions from the
conventional software reliability models, we can build a
neural-network-based model for software reliability.

2.2.1.1. The Derivations of
Proposed Approach in Software Reliability
Modeling

We first consider the logistic growth curve model [3].
This model simply fits the mean value function with a
form of the logistic function. Its mean value function is
given by:

 () , 0, 0, 0.
1 bt

a
m t a b k

ke
 (4)

We can derive a form of compound functions from its
mean value function as the following:

Replace k with e-c:

()
() .

1 1 1bt c bt bt c

a a a
m t

ke e e e

Assume that
g(x)=bx+c, (5)

1
()

1 x
f x

e
, (6)

and m(x)=ax. (7)

Therefore, we can get

m(f(g(x))) = m(f(bx+c))

 () ()

1
()
1 1bx c bx c

a
m

e e
 (8)

This means that the mean value function of logistic growth
curve model is composed of g(x), f(x), and m(x).
Subsequently, we derive the compound functions from the
viewpoints of neural network. Consider the basic feed-
forward network shown in Fig. 3. Note that the network

has only one neuron in each layer and
1

11w ,
0

11w are the

weights and 1b and 0b are the biases. When the input,

x(t),at time t is fed to the input layer, we can derive the
following form.
The input of the hidden layer is:

1

11_ in() 1h t w t b (9)

The output of the hidden layer is:

() (_ in())h t f h t (10)

where f(x) is the activation function in the hidden layer.

The input of the output layer is

0

11_ () () 0y in t w h t b (11)

The output of the output layer is

 () (_ ()),y t g y in t (12)

where g(x) is the activation function in the output ayer.

Fig. 3 Feed-forward neural net work with single neuron
in each laye r
 After the derivation above, we find that if we
assume the activation functions f(x) and g(x) as:

1
()

1 x
f x

e

()g x x

Furthermore, we remove the bias in the output layer. We
can consequently get

0

11() _ () ()y t y in t w h t (13)

0
0 11
11 1

11

(_ ())
1 (1)

w
w f h in t

e w t b

According to Eq. (13), we have successfully derived the
neural network into a logistic growth curve model. By the
same process, we can derive the neural network into many
other existing models.

2.3. GENETIC ALGORITHM APPROACH

Software reliability growth models (SRGMs) are
very important for estimating and predicting software
reliability. However, because the assumptions of traditional

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

parametric SRGMs (PSRMs) are usually not consistent with
the real conditions, the prediction accuracy of PSRMs are
hence not very satisfying in most cases. In contrast to
PSRMs, the non-parametric SRGMs (NPSRMs) which use
machine learning (ML) techniques, such as artificial neural
networks (ANN), support vector machine (SVM) and
genetic programming (GP), for reliability modeling can
provide better prediction results across various projects.
Gene Expression Programming (GEP) which is a new
evolutionary algorithm based on Genetic algorithm (GA)
and GP, has been acknowledged as a powerful ML and
widely used in the field of data mining. Thus, we apply
GEP into non-parametric software reliability modeling in
this paper due to its unique and pretty characters, such as
genetic encoding method, translation process of
chromosomes. This new GEP-based modeling approach
considers some important characters of reliability modeling
in several main components of GEP, i.e. function set,
terminal criteria, fitness function, and then obtains the final
NPSRM (GEP-NPSRM) by training on failure data.

2.3.1. Software reliability modeling based on
GEP

In this study, we introduce how to use GEP to
extract the required non-parametric SRGM (i.e. GEP-
NPSRM) from training failure data-set. There are five
important com- ponents (i.e. the function set, terminal set,
fitness function, control parameters and ter- mination
criterion) must be determined before using GEP. Thus,
the GEP-based non-parametric software reliability
modeling approach is given here by considering some
reliability modeling into the above five components.

STEPS:
Input:
1. The training failure data-set D0 can be

generally shown as two input forms (t1, m1)...(tj,

mj)...(tn, mn) or (m1, t1)... (mj, tj)...(mn, tn), where

n is data number of D0, mj is cumulated faults, t is

failure time (interval or cumulated time). If the
form of NPSRM is shown as M(t).

Data Pre-process
Because of the complexity and uncertainty of

testing process, the original failure data-set
unavoidably contains much noise which may
affect the prediction accuracy. Thus the initial
failure data-set should be pre-processed first.
Besides, we also recommend several denoising
methods, such as K-order moving aver- age
(recommended in [4]) or exponential smoothing,
for data pre-processing.

 2.3.2. Modeling Process

Step1: The initial population P0 can be created

by some initialization strategy. If P0 has the

dominant characters (i.e. the genes are more
diversified and suitable for the modeling object),
the evolutional efficiency and the modeling quality
can be effectively improved. Thus, for creating P0
with dominant characters, we recommended
several elementary functions as the elements of
function set Fs, which are frequently used for soft-
ware reliability modeling and shown as follows:

Fs={+,—,/,*,exp(x),Sqrt,Log}
 (2)
For further validating that the function set Fs
shown in Eq.2 is indeed more suitable

for non-parametric reliability modeling, in section
4.1, we also compare the Fs with the function set
Fs’ shown in Eq.3 which is composed of several
general and elementary functions. These primary
functions are also commonly used in mathematic
modeling. Thus we select Fs’ as an additional
function set in this paper for comparison.

 Fs’={+,—,/,*,10x,sin,cos}
 (3)

In the same way, because the GEP-NPSRM is
used for reliability prediction, we recommend that
the terminal set is compound by the failure time or
the number of cu- mulated faults [4] in the training
data-set and the random constant between 0 and 9.

Step2: Encoding chromosomes.
Step3: Fitness evaluation. The form of fitness

function heavily depends on the type of problem

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

i i1 ip
0 j j

and must take into account that GEP was
developed to maximize the fitness. Thus, we
recommend the following two fitness functions
which are usually used as the comparison criteria
of fitting or prediction power of SRGMs.

1.Mean Squared Error (MSE):

MSE=

' 2

1

1
()

n

i i

i

y y
n (4)

2. R-Square(R):

R=

' 2 2

1 1

1 () / ()
n n

i i i ave

i i

y y y y
 (5)

Where yi is the observed data, yi’ is the

fitting data, yave is the average value of yi. The

value of MSE is smaller or R-Square is closer to 1,
the fitness of chromosome is better.

Step4: If the fitness of chromosome doesn’t
satisfy the terminal criterion T, turning to Step 5.
Otherwise stopping iteration and turning to the
Output. We recommend the following three forms
of the terminal criterion T: 1) the fitness of
chromosome achieves the required value; 2) the
evolution process achieves a required number of
generations; 3) the value of fitness has no change
during the give number of generations.

Step5: Creating new generation by selection
and a series of genetic operators.
Step6: Turning to Step 2 for a new iterative
process.

Output: The required GEP-NPSRM satisfying
the terminal criterion T.

2.4 BAYESIAN CLASSIFICATION APPROACH

In this approach, we develop a unified approach to type I
and type II software reliability models in the presence of
metrics information based on the use of Bayesian
nonparametric regression via neural networks. Neural
network based approaches are not new in software
reliability prediction, but, in general such networks have
been developed as direct predictors of failures or inter
failure times. However, it has been suggested that such
models are often prone to overfitting and are not very
good at out of sample prediction of reliability. See [2]. In
contrast, our approach is based on using a simple
parametric model for failure times or numbers of failures
where the failure rate is modeled nonparametrically.

Consider type I software reliability models where

the times between successive software failures, say T1, T2
,...are observed and where it is presumed that the software

is corrected, possibly imperfectly, after each failure. Then,

it is natural to assume a nonhomogeneous Poisson
process for failures so that we model.

| ()i i iT EX (1)

for i=1,2,… Many standard software reliability models

assume this basic exponential form. For instance, the Jelinski
Moranda model sets

(1)i N i (2)

where N represents the number of faults in the
original code, is the fault discovery rate and perfect

fault correction is assumed.
Here, we suppose that after each software failure is

observed, the code is modified and software metrics
reflecting the state of the code are evaluated. Then, we
relate the failure rate of the software to the software
metrics as follows:

log ()i ig X

 (3)

Where
1(,....)T

i ipxi x x are the covariates available after

i-1 failures have been observed. One possibility would
now be to consider a linear model for the function g (x.)
which implies a standard exponential r egression model
for the inter failure times. However, in many cases, the
relation between the log failure rate and the metrics may be
highly non linear and therefore, a nonparametric model
should be preferred. Here we use a feed forward neural
network, that is:

1

() ()T

k

o j j

j

g x x

 (4) where

1() (1 exp())c c
 (5)

and (1,....)T
j j jp

2.5 SUPPORT VECTOR MACHINE(SVM)
APPROACH

2.5.1. INTRODUCTION

Support Vector Machines (SVM) are used to detect and
exploit complex patterns in data by clustering, classifying
and ranking the data. They are learning machines that are
used to perform binary classifications and regression
estimations. They commonly use kernel based methods to
apply linear classification techniques to non-linear
classification problems. There are a number of types of
SVM such as linear, polynomial, sigmoid etc. In recent

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 l

years, support vector machine (SVM) [4] is a new technique
for solving pattern classification and universal
approximation, it has been demonstrated to be very
valuable for several real-world applications [5, 6]. SVM is
known to generalize well in most cases and adapts at
modeling nonlinear functional relationships which are

difficult to model with other techniques. Consequently, we
propose to apply support vector regression (SVR) to build
SRGM and investigate the conditions which are typically
encountered in software reliability engineering. We believe
that all these characteristics are appropriate to SRGM. SVM
was introduced by Vapnik in the late 1960s on the foundation
of statistical learning theory [7]. It has originally been
used for classification purposes but its principle can be
extended easily to the task of regression by introducing an
alternative loss function. The basic idea of SVR is to map the
input data x into a higher dimensional feature space F via a
nonlinear mapping φ and then a linear regression problem is
obtained and solved in this feature space.

2.5.2. Modeling the Software
Reliability Growth

In this section, we present real projects to which we apply
SVR for software re- liability growth generalization and
prediction. The data sets are Sys1 and Sys3 software
failure data applied for software reliability growth
modeling in [2]. Sys1 data set contains 54 data pairs and
Sys3 data set contains 278 data pairs. The data set are
normalized to the range of [0,1] first. The normalized
successive failure occurrence times is the input of SVR
function and the normalized accu- mulated failure number
is the output of SVR function. We denote the SVR-based
software reliability growth model as SVRSRG.

Here we list the math expression of three conventional
SRGMs refered in the experiments.

– Goel-Okumoto Model:

m(t) = a(1 − ert), a > 0, r > 0 (9)
– Yamada Delayed S-Shaped Model:

m(t) = a(1 − (1 + rt)e−rt) (10)

The approach taken to perform the modeling and prediction
includes following steps:

1. Modeling the reliability growth based on the raw
failure data
2. Estimating the model parameters
3. Reliability prediction based on the established model

Three groups of experiments have been performed.

Training error and test- ing error have been used as
evaluation criteria. In the tables presented in this paper,
the training error and the testing error are measured by

sum-of-square 1
()

l

i ii
x x

, where xi , x̂i are,

respectively, the data set measurements and their
prediction. In default case, SVR used in the experiment is

ν-SVR and the parameters ν and C are optimized by

cross-validation method.
In the experiment of generalization, we partition the
data into two parts:

Training set and test set. Two thirds of the samples are
randomly drawn from the original data set as t raining
set and remaining one third of the samples as the
testing set. This kind of training is called generalization
training [8].

3 CONCLUSION

We have shown that the above discussed
approaches can be used to assess the Software Reliability
effectively and efficiently. The machine learning
techniques can be used for building software reliability
growth models. The entire system of software
reliability research is considered useful for software
development and testing industry. At the present we are
investigating the use of different other machine
learning techniques like decision-region approach,
self-organization map approach, neuro-fuzzy
approaches to solve the software reliability growth
modeling problems. As a future work, different machine
learning algorithms or improved versions of the used
machine learning algorithms may be included in the
experiments.

4.REFERENCES:

1. [Musa97] John D. Musa, Introduction to Software
Reliability Engineering and Testing, 8th
International Symposium on Software Reliability
Engineering (Case Studies). November 2-5, 1997.
Albuquerque, New Mexico.

2. Fengzhong Zou, Joseph Davis- Knowledge
Management Research Group, School of
Information Technologies, the university of Sydney,
Australia.

3. [Feuring94] Feuring, Th., Lippe, W.-M., Fuzzy
Neural Networks Are Universal Approximators,
submitted to: IFSA World Congr. July 1995, Sao
Paulo

4. [Feuring95] Feuring, Th., Fuzzy-Neuronale Netze,
Ph.D. Thesis, Westf. Wilhelms Universit¨at
M¨unster, Institut f¨ur Numerische u.
instrumentelle Mathematik, Germany, 1995

5. [Hornik89] Hornik, K., Stinchcombe, M.,
Multilayer feedforward networks are universal
approximators, Neural Networks, 2, pp. 359-366,
1989

6. [Lippe94] Lippe, W.-M., Feuring, Th., Tenhagen, A.,
A Fuzzy-Controlled Delta Bar-Delta Learningrule,

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Proc. of the IEEE, Intern. Conf. on Neural
Networks, pp. 1686-1690, Orlando, Fl., 1994.

7. A. L. Goel and K. Okumoto, ―Time-dependent
error- detection rate model for software
reliability and other performancemeasures,‖
 IEEE Transactions on Reliability,
Vol. 28, No. 3, pp 206–211, 1979.

 8 . H. Ohetera and S Yamada., ―Optimal allocation
and control problems for software testing
resources‖, IEEE Transactions on Reliability, Vol.
39, No. 2, p. 171-176,1990.
9. H. Pham, System Software Reliability,
Reliability Engineering Series, Springer, 2006.

 10. J. G. Shanthikumar, , ―A General Software
Reliability Model For Performance Prediction,
Microelectronics Reliability‖, Vol. 21, pp. 671–682,
1981.

 11. Bai, C. G., Hu, Q. P., Xie, M. and Ng, S. H. (2005).
Software failure prediction based on a Markov
Bayesian network model. The Journal of

Systems and Software, 74,275-282.
 12. Cai, K. Y., Cai, L., Wang, W. D., Yu, Z. Y. and

Zhang, D. (2001). On the neural network
approach in software reliability modeling, The

Journal of Systems and Software,58, 47-62.
 13. Catal, C. and Diri, B. (2009). A systematic review of

software fault prediction studies.Expert Systems

with Applications, 36, 7346-7354.
 14. Celeux, G., Forbes, F., Robert, C. P. and

Titterington, D. M. (2007). Deviance
information criteria for missing data models

(with discussion). Bayesian Analysis, 1,651-706.
 15. Fenton, N. and Neil, M. (1999). Software

metrics: Successes, failures and new directions.
Journal of Systems and Software, 47, 149-157.

16. M. R. Lyu, Handbook of Soft ware
Reliability Engineering. McGraw-Hill, 1996.

 17. J. D. Musa, A. Iannino, and K. Okumoto, Software
Reliability, Measurement, Prediction and
Application. McGraw-Hill, 1987.

 18. M. Xie, Software Reliability Modeling. World
Scientific Publishing,1991.

19. C. Y. Huang, M. R. Lyu, and S. Y. Kuo, ―A
Unified Scheme of Some Nonhomogenous Poi
sson Process Models for Soft ware Reliability
Estimation,‖ IEEE Trans. Software Eng., Vol. 29,
No. 3, March 2003, pp. 261-269.

20. Z. Jelinski, and P. B. Moranda, ―Software
Reliability Research,‖ in Statistical Computer
Performance Evaluation (ed. Freiberger, W.),
Academic Press, New York, 1972, pp. 465-484.

21. J. Musa, ―Data analysis center for software: An
information analysis center,‖ Western Michigan
University Library, Kalamazoo, Michigan,1980.

22. A. Sheta, ―Estimation of the COCOMO model
parameters using genetic algorithms for NASA

software projects,‖ Journal of Computer Science,
USA, vol. 2, no. 2, pp. 118–123, 2006.

23. T. Minohara and Y. Tohma, ―Parameter estimation of
hyper-geometric distribution software reliability
growth model by genetic algorithms,‖ in
Proceedings of the 6th International Symposium on
Software Reliability Engineering, pp. 324–329, 1995.

24. S. Aljahdali, D. Rine, and A. Sheta, ―Prediction of
software reliability: A comparison between
regression and neural network non-parametric
models,‖ in ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA
2001), Beirut, Lebanon, pp. 470–473, 2001.

25. S. Aljahdali, A. Sheta, and D. Rine, ―Predicting
accumulated faults in software testing process
using radial basis function network models,‖ in
17th International Conference on Computers and
Their Applica- tions (CATA), Special Session on
Intelligent Software Reliability, San Francisco,
California, USA, 2002.

